Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(16): 2522-2532, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38587853

RESUMO

Facile electro-activated glassy carbon electrodes (e-GCEs), which are prepared in electrolyte solution with a certain potential for a few seconds, have been verified to improve analytical performance toward not a few electro-active molecules recently. Nevertheless, how and why the potential plays an important role is not clear, and has even not received enough consideration. In this paper, we found that the mode and the range of applied potential significantly impacted the sensitivity of methyl parathion (MP), which is a typical pesticide with the electro-active group of -NO2. Compared with constant potential, the e-GCE with cyclic potential provided a much more stable baseline during MP detection. Additionally, the electro-oxidation peak current of MP at around -0.1 V on it was higher than another changeable potential (constant current). What's more interesting, with cyclic potential for 50 segments from -2 to 1.5 V, the peak current value increased by 30 times in comparison with a bare GCE, but only 2 times from -2 to 1 V. Then after systematic investigation including structures of the electrode surface and functional groups, we speculated that the produced group of O-CO in the process of activation and remaining groups of C-O and CO on the bare GCE surface are beneficial for adsorbing MP molecules leading to enhanced peak current. Employing the proposed e-GCE, the limit of detection of MP reached 0.015 µM and the reproducibility was perfect. This work elucidates the potent impact of electro-activation potential parameters on electroanalysis behaviors.

2.
Nat Commun ; 13(1): 3996, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810154

RESUMO

Atomically-thin van der Waals layered materials, with both high in-plane stiffness and bending flexibility, offer a unique platform for thermomechanical engineering. However, the lack of effective characterization techniques hinders the development of this research topic. Here, we develop a direct experimental method and effective theoretical model to study the mechanical, thermal, and interlayer properties of van der Waals materials. This is accomplished by using a carefully designed WSe2-based heterostructure, where monolayer WSe2 serves as an in-situ strain meter. Combining experimental results and theoretical modelling, we are able to resolve the shear deformation and interlayer shear thermal deformation of each individual layer quantitatively in van der Waals materials. Our approach also provides important interlayer coupling information as well as key thermal parameters. The model can be applied to van der Waals materials with different layer numbers and various boundary conditions for both thermally-induced and mechanically-induced deformations.

3.
Research (Wash D C) ; 2021: 9760729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38617378

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) have proven to be promising active layers for nonvolatile memories because of their rich abundance in earth, mobile ions, and adjustable dimensions. However, there is a lack of investigation on controllable fabrication and storage properties of one-dimensional (1D) OIHPs. Here, the growth of 1D (NH=CINH3)3PbI5 ((IFA)3PbI5) perovskite and related resistive memory properties are reported. The solution-processed 1D (IFA)3PbI5 crystals are of well-defined monoclinic crystal phase and needle-like shape with the length of about 6 mm. They exhibit a wide bandgap of 3 eV and a high decomposition temperature of 206°C. Moreover, the (IFA)3PbI5 films with good uniformity and crystallization were obtained using a dual solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). To study the intrinsic electric properties of this anisotropic material, we constructed the simplest memory cell composed of only Au/(IFA)3PbI5/ITO, contributing to a high-compacted device with a crossbar array device configuration. The resistive random access memory (ReRAM) devices exhibit bipolar current-voltage (I-V) hysteresis characteristics, showing a record-low power consumption of ~0.2 mW among all OIHP-based memristors. Moreover, our devices own the lowest power consumption and "set" voltage (0.2 V) among the simplest perovskite-based memory devices (inorganic ones are also included), which are no need to require double metal electrodes or any additional insulating layer. They also demonstrate repeatable resistance switching behaviour and excellent retention time. We envision that 1D OIHPs can enrich the low-dimensional hybrid perovskite library and bring new functions to low-power information devices in the fields of memory and other electronics applications.

4.
Light Sci Appl ; 9: 114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637081

RESUMO

Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals heterostructures-combining the best of various 2D materials at an artificial atomic level-provide many new possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP-WSe2 heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed, demonstrating highly efficient energy transfer in this heterostructure with type-I band alignment. For BP-MoS2 heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical PN heterojunction at the interface. Our work reveals that the BP-TMDC heterostructure with efficient light emission in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property studies and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...